Sorad: a systems biology approach to predict and modulate dynamic signaling pathway response from phosphoproteome time-course measurements
نویسندگان
چکیده
MOTIVATION Signaling networks mediate responses to different stimuli using a multitude of feed-forward, feedback and cross-talk mechanisms, and malfunctions in these mechanisms have an important role in various diseases. To understand a disease and to help discover novel therapeutic approaches, we have to reveal the molecular mechanisms underlying signal transduction and use that information to design targeted perturbations. RESULTS We have pursued this direction by developing an efficient computational approach, Sorad, which can estimate the structure of signal transduction networks and the associated continuous signaling dynamics from phosphoprotein time-course measurements. Further, Sorad can identify experimental conditions that modulate the signaling toward a desired response. We have analyzed comprehensive phosphoprotein time-course data from a human hepatocellular liver carcinoma cell line and demonstrate here that Sorad provides more accurate predictions of phosphoprotein responses to given stimuli than previously presented methods and, importantly, that Sorad can estimate experimental conditions to achieve a desired signaling response. Because Sorad is data driven, it has a high potential to generate novel hypotheses for further research. Our analysis of the hepatocellular liver carcinoma data predict a regulatory connection where AKT activity is dependent on IKK in TGFα stimulated cells, which is supported by the original data but not included in the original model. AVAILABILITY An implementation of the proposed computational methods will be available at http://research.ics.aalto.fi/csb/software/. CONTACT [email protected] or [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
منابع مشابه
cAMP-Epac Pathway Stimulation Modulate Connexin-43 and MicroRNA-21 Expression in Glioma Cells
Introduction: Malignant astrocytic gliomas are the most common and lethal brain malignancies due to their refractory to the current therapies. Nowadays, molecular targeted therapy has attracted great attention in treatment of glioma. Connexin 43 (Cx43) and micro ribonucleic acid- 21(miR-21) are among molecules that are involved in glioma development and progression. These molecules showed...
متن کاملInvestigating the role of signaling pathways and cancer stem cells in esophageal cancer with a therapeutic approach
Esophageal cancer (EC) is the sixth main cause of cancer death worldwide. Important genes associated with esophageal cancer include FOXO3, AKT, and GSK3β. Excessive FOXO3 expression inhibits the proliferation of cancer cells. The expression of AKT is involved in controlling cell growth in tumors. GSK3β activity is higher in cancer tissues. Given the effective role of cancer stem cells (CSCs) in...
متن کاملInteraction of viral oncogenic proteins with the Wnt signaling pathway
It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...
متن کاملConstraint-Based Modeling and Kinetic Analysis of the Smad Dependent TGF-β Signaling Pathway
BACKGROUND Investigation of dynamics and regulation of the TGF-beta signaling pathway is central to the understanding of complex cellular processes such as growth, apoptosis, and differentiation. In this study, we aim at using systems biology approach to provide dynamic analysis on this pathway. METHODOLOGY/PRINCIPAL FINDINGS We proposed a constraint-based modeling method to build a comprehen...
متن کاملA Bioinformatics Approach to Prioritize Single Nucleotide Polymorphisms in TLRs Signaling Pathway Genes
It has been suggested that single nucleotide polymorphisms (SNPs) in genes involved in Toll-like receptors (TLRs) pathway may exhibit broad effects on function of this network and might contribute to a range of human diseases. However, the extent to which these variations affect TLR signaling is not well understood. In this study, we adopted a bioinformatics approach to predict the consequences...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 29 10 شماره
صفحات -
تاریخ انتشار 2013